BOSTON
UNIVERSITY

Regularization

And other ways to improve test performance

DLADS — Spring 2024

https://udlbook.github.io/udlbook/

Regularization

* Why is there a generalization gap between training and test data?
* Overfitting (model describes statistical peculiarities)
 Model unconstrained in areas where there are no training examples

= methods to reduce the generalization gap
* Technically means adding terms to loss function

* But colloquially means any method (hack) to reduce gap between
training and test data

Regularization

* Implicit regularization

* Early stopping

* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning

* Data augmentation

Explicit regularization

e Standard loss function:

(}5 — argmin [L[qﬁﬂ
o

I
= argmin [Z li[xi, Yz]]
i=1

¢

Explicit regularization

e Standard loss function:

¢ = argmin [L[qﬁ”
¢

— argmin [Z li[xs, yz-]]

¢ i=1

* Regularization adds an extra term

I
¢ = arg;nin [Z CilXi, yi] + A g[qb]]
i=1

Explicit regularization

e Standard loss function:

¢ = argmin [L[qﬁﬂ
¢

— argmin [Z li[xs, yz-]]

¢ i=1

* Regularization adds an extra term

I

¢ = arg;nin [Z Gilxiyil + A g[qb]]
1=1

* Where g[¢] is smaller for preferred parameters

e A > 0 controls the strength of influence

Explicit regularization

a)
22.5

Loss function for Gabor model
BN of Lecture 6 and Chapter 6.

O denotes local minima

2.5

Explicit regularization

a) b)

22.5

Regularization

Example of a regularization
function that prefers
parameters close to O.

b1

2.5

Explicit regularization

a)
22.5

¢1

2.5

Fewer local minima and the
absolute minimum has
moved.

A
f \

Loss + regularization

! /

0
b0

O denotes local minima

Probabilistic interpretation

e Maximum likelihood:

A

. _
¢ = argmax || | Pr(yilx;, ®)
é =1]

* Regularization is equivalent to adding a over parameters

A

I
¢ = argglax HPT(}’i\Xi, ¢)Pr(¢)
=1

... what you know about parameters before seeing the data

Equivalence

* Explicit regularization:

-]
¢ = argdr)nin > lilxi,yi] + A gle)]
L i=1
* Probabilistic interpretation:
. _
¢ = al‘gquﬂax 1] Priyilx:, #)Pr(e)
[i=1 _

* Converting to Negative Log Likelihood (e.g. —log(:)):

A-glg] = —log|Pr(e)

L2 Regularization

* Most common regularizer is
* Favors smaller parameters (like in previous example)

A

¢ = arg;niﬂ Lig, {xi,yi}] + A) _ &5
j

e Also called

* In neural networks, usually just for weights

Why does L2 regularization help?

* Discourages fitting excessively to the training data (overfitting)
* Encourages smoothness between datapoints

L2 regularization (simple net from last lecture)

a)I ; A=0 b) A = 0.00001 c) A = 0.0001
4 e ,

= |/ / /

2 0.0 / / /'

g r \ 4 ! \ 4 ! \ A

NS NS NS

O Y

d)IO A = 0.001 e) A =0.01 f) A=0.1

E._oo / / /

03 \ A ! \ v I 4 \ /
I'Oo.o' 05 1000 05 1000 05 10

PyTorch Explicit L2 Regularizer

SGD ADAM

CLASS torch.optim.Adam(params, 1r=0. 001, betas=(0.9, 0.999), eps=1e-08,
weight_decay=0, amsgrad=False, *, foreach=None, maximize=False,
———
capturable=False, differentiable=False, fused=None) [SOURCE]

CLASS torch.optim.SGD (params, 1r=0. 001, momentum=0, dampening=0, weight_decay=0,
———
nesterov=False, * maximize=False, foreach=None, differentiable=False) [SOURCE]

Implements stochastic gradient descent (optionally with momentum). ot ts Ad igorith
mplements Adam algorithm.

Parameters Parameters

o params (iterable) - iterable of parameters to optimize or dicts defining parameter groups * params (iterable) - iterable of parameters to optimize or dicts defining parameter groups
e Ir (float, Tensor, optional) - learning rate (default: 1e-3). A tensor LR is not yet supported

 Ir (float, optional) - learning rate (default: Te-3)
: for all our implementations. Please use a float LR if you are not also specifying fused=True

* momentum (float, optional) - momentum factor (default: 0) or capturable=True.
— * weight_decay (float, optional) - weight decay (L2 penalty) (default: 0) * betas (Tuple[float, float], optional) - coefficients used for computing running averages of
gradient and its square (default: (0.9, 0.999))
» eps (float, optional) - term added to the denominator to improve numerical stability
(default: 1e-8)

https://pytorch.org/docs/stable/generated/torch.optim.SGD.html _ « weight_decay (float, optional) - weight decay (L2 penalty) (default: 0)
N ——

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

Regularization
* Explicit regularization

* Early stopping

* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning

* Data augmentation

Going to infinitesimal (continuous)
step, change in ¢ governed by:

Implicit regularization 0 _ oL

ot d¢

a) Loss b) Regularization c) Loss + regularization

0
Po
Gradient descent approximates a Approximate implicit

differential equation regularization added to
(infinitesimal step size) continuous gradient descent

0
Add in regularization to D.E of

2
~||1?%/54||” and differential
equation converges to same place

Implicit regularization

* Gradient descent disfavors areas where gradients are steep

. OL ||
Lap|@| = L{g] + 90

o
4

Implicit regularization

* Gradient descent disfavors areas where gradients are steep

. 0L
Lapl@] = L{g] + - 9o

e SGD likes all batches to have similar gradients

0L, OL 2
oo

B
Lsapl#] = Lanl¢] + % Z

B
B 4|00 1B -
|\
Y
1<~ | | Want the batch variance to be small,
Where L= I z_; lilxi,yi] and Ly = B XL: lilxi; yil rather than some batches fitting well
= o and others not well...

Implicit regularization

* Gradient descent disfavors areas where gradients are steep

- a || 0L)7
L =L B
e SGD likes all batches to have similar gradients
. . a & oL, OL :
Lsap|¢) :LGD[¢]+E; ‘(% ~ 9%
a ||oL]? o <||oL, OL|’
=Ll 1 oal * 15 200 ~ 90

b=1

* Depends on learning rate — perhaps why larger learning rates generalize better.

Original Gabor Model

Loss

GD modification

[

<
2.5 T
210 0 10-10 0 10
SGD modification Modified loss, Lsagp|d
22.5 P / l
2.5

-10 0 10-10 0 10

oL

O

2

B
(0%

4B
b=1

oL, 9L
op 0¢

2

MNISTID no label noise b) MNISTID no label noise
— Full batch, LR = 0.5 — Batch size 10, LR = 0.1

— Full batch, LR = 0.1 | —— Batch Size 100, LR = 0.1

601 tk Full batch, LR = 0.05 601 Full batch (4000), LR = 0.1
50"
40
30-

] Test
20-
10-

0. W N Train
0 100 200 300 400 0 100 200 300 400

Hidden layer size Hidden layer size

Generally, performance is
* best for larger learning rates
* best with smaller batches

Regularization

* Explicit regularization
* Implicit regularization

* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning

* Data augmentation

Early stopping

* If we stop training early, weights don’t have time to overfit to noise
* Weights start small, don’t have time to get large

* Reduces effective model complexity

* Known as

* Don’t have to re-train with different hyper-parameters — just
“checkpoint” regularly and pick the model with lowest validation loss

1 Loss = 0.80
;3 .
— . O
200{ /" \<;Q
5 -)
| o? %

Loss = 0.36

Loss = 0.16

b) c)
Iter =0 Iter = 1000 Ilter = 5000
Loss = 32.24 Loss = 1.64 Loss = 1.10
1 N
o _ ' »
~—] "
o® % g %
C 05 " 1000 05 1.0
f)
Iter = 10000 lter = 50000 lter = 200000

A
Input,

1000 05

" 1.000 05

" 1.0

Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Dropout
* Adding noise
* Transfer learning, multi-task learning, self-supervised learning

* Data augmentation

Ensembling

* Average together several models —an

 Can take mean or median
* Before softmax for classification

* Simply different initializations or even different models

e Or train with different subsets of the data resampled with
replacements --

a) Original b) Model 1 c) Model 2

o0 @ 05 1000 05 1000 05 10
d)4 . Model 3 e) Model 4 f) Ensemble
| : |~
> ® ! _ o
g /\ | [\' o L4\
2 PP : Y4 N Y ¥ A f
+J @,
8 xk/ . .\‘....'“V‘ ’ .S".J/
1.0

00 @05 1000 05 1000 05 10
Input, Input, x Input,

Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Ensembling

* Adding noise
* Transfer learning, multi-task learning, self-supervised learning

* Data augmentation

Randomly clamp ~50% of hidden units to 0 on each
iteration.

Dropout

a) Original b) Turn off hidden unit 8 C) 2000 iters dropout (7/8/9)

0 05 1000 05 1000 05 10
Input, Input, Input,

* Makes the network less dependent on any given hidden unit.

* Prevents situations where subsequent hidden units correct for excessive swings from earlier hidden
units

e Can eliminate kinks in function that are far from data and don’t contribute to training loss

* Must use weight scaling inference rule — multiple weights by (1 — dropout probability)

Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Ensembling

* Dropout

* Transfer learning, multi-task learning, self-supervised learning

* Data augmentation

Adding noise

Adding noise to input with different variances.

3)4.0 b) c)
. o, = 0.0 . o, = 0.60 . o, = 1.0
14 7\ 7\
5] 1 '
g \ | /
'1'%.0 05 1000 05 10 00 05 10
Input, = Input, = Input,

* toinputs —induces weight regularization (see Exercise 9.3 in UDL)
* to weights — makes robust to small weight perturbations
* to outputs (labels) — reduces “overconfident” probability for target class

Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Ensembling

* Dropout

* Adding noise

* Data augmentation

Transfer Learning

(1) Train the model for
segmentation

Assume we have lots of
segmentation training data

Depth , Assume we limited
Model —> _ e . .
StpUE Layer depth training data

(2) Replace the final layers to (3) Either:
match the new task and

Segmentation

MoE! output layer

a) Freeze the rest of the layers and
train the final layers

b) Fine tune the entire model

Multi-Task Learning

Segmentation
output layer

Model —

Depth
output layer

* Train the model for 2 or more tasks simultaneously
 Weighted combo of loss fncs
Ltotal = a- Lsegmentaiton + ,8) Ldepth
* Less likely to overfit to training data of one task

* Can be harder to get training to converge. Might have to vary the
individual task loss weightings, a and .

Self-Supervised Learning

Inpainting

Model [—>
output layer

The animal didn’t cross the because it was too tired.

* Mask out part of the training data
* Train model to try to infer missing data
* masked data is the target
=» Model learns characteristics of the data

 Then apply transfer learning

Regularization

* Explicit regularization

* Implicit regularization

* Early stopping

* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning

Data augmentation

Flip Rotate and crop d) Vertical stretch

Regularization overview

Make function smoother

Increase data

\

Data
augmentation
Multi-task
learning
Transfer
learning

)

Combine multiple models Find wider minima

Feedback?

https://docs.google.com/forms/d/e/1FAIpQLSep8ThqLupjjyf4Uos5ChIuK8P-GrhEW5Im67vNzD8m8iNtMA/viewform

